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Abstract

A new numerical formulation is presented in this paper for incompressible viscous free surface ¯ow without

smearing the free surface. Laws of conservation for the entire physical domain, including both liquid and air, are

formulated with a single set of governing equations. To properly handle the discontinuities of the physical properties

across the free surface, an extended weighting function scheme is developed for the numerical solution on a ®xed and

nonstaggered Cartesian grid system. Unlike existing numerical methods, the force balance equation is imposed on the

free surface through the use of the NAPPLE algorithm without smearing the free surface. During the solution pro-

cedure, a harmonic function referred as an ``extrapolated velocity'' from the liquid is computed based on the velocity

solution at the grid points adjacent to the free surface on the liquid side. With a migration velocity interpolated from

such a harmonic function, the free surface pro®le for the next time step is estimated. This gives rise to a smooth free

surface pro®le and thus circumvents high frequency noises on the curvature of the resulting free surface. Furthermore,

advancement of the free surface is not restricted to one grid mesh in a single time step. Performance of the present

method is examined through three well-documented dam-breaking examples. The results reveal the existence of an

induced vortex in a layer of air adjacent to the free surface. Good agreement between the computed water front and the

experimental data is observed. Although only two-dimensional cases are demonstrated in this paper, concept of the

present numerical method is equally applicable to three-dimensional problems with moving free surfaces. It also applies

to convective heat and mass transfer problems such as ®lling process in gravity and die casting processing. Ó 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

Incompressible viscous ¯ow with a moving free sur-

face has many applications in industry and in nature

such as environment engineering, die casting, injection

molding process, and many others. The available nu-

merical methods for such problems can be classi®ed into

moving and ®xed grid approaches. Moving grid ap-

proach is typically con®ned to special applications due

to limitations in the rezoning technique [1±3]. In this

connection, the ®xed grid approach seems to be a more

viable method whenever a general motion of free surface

¯ow (e.g., the ®lling process in die casting [4]) is solved.

Among the existing ®xed grid approaches, Harlow

and Welch [5] proposed the well-known maker and cell

method (MAC) that labels ¯uid particles with markers.

Recently, Nakayama and Mori [6] improved the MAC

method to preclude the possibility of producing an un-

physical liquid front advancement. In the use of the

MAC method, the region occupied by the ¯uid is

tracked by the locations of the markers in the course of

¯uid motion. Such a method de®nes the ¯uid region

rather than the free surface, and thus requires large

computer storage and additional computational time to

move all the ¯uid markers to new locations especially

when a three-dimensional problem is encountered [7].

Furthermore, a ®nite volume far from the free surface

might be unrealistically over®lled or partially ®lled with

markers due to numerical errors. To circumvent the

disadvantages of the MAC method, Raad et al. [8]
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suggested the use of micro cells and markers only in a

region near the free surface. In their micro cell method

(MIC), the movement of the free surface was accom-

plished by tracking the massless markers on the free

surface.

In 1981, Hirt and Nichols [9] introduced the volume

of ¯uid method (VOF) for incompressible ¯ow with a

moving free surface. The VOF method is based on the

concept of a fractional volume of liquid inside a ®nite

volume [10]. A ®nite volume fully ®lled with liquid is

denoted by f � 1, while an empty ®nite volume has the

value of f � 0. For a ®nite volume containing the free

surface, the fractional volume of liquid would be

0 < f < 1. Hirt and Nichols [9] claimed that location of

the free surface can be determined from f and its normal

direction, although f is a step function across the free

surface. However, there are a few disadvantages in the

use of the VOF method as remarked by Wang and

Wang [11]. First, a partially ®lled ®nite volume could be

surrounded by non-empty ®nite volumes and thus be

considered ®lled. Second, empty or partially ®lled ®nite

volume could be over®lled when the free surface ad-

vances. Third, the computational domain would sud-

denly change whenever a non-empty ®nite volume

becomes ®lled or surrounded by other non-empty ®nite

volume. This sudden change could cause numerical in-

stability and/or unphysical results for the velocity and

pressure near the free surface.

One of the major di�culties in solving a moving free

surface problem is the prediction of the free surface

advancement. In the VOF method, location of the free

surface is estimated by using a donor±acceptor al-

gorithm. However, implementation of donation and

reception of liquid is restricted to only between adjacent

®nite volumes. Material moving through more than one

®nite volume is not allowed in a single time step. As a

result, the time step would be very small, especially when

a ®ne grid system is desired. Furthermore, the numerical

procedure becomes very cumbersome when the VOF

method is applied to three-dimensional problems. In

three-dimensional cases, 64 and 24 di�erent arrange-

ments must be checked, respectively, for the satisfaction

of mass conservation and no-shear condition on the free

surface [4].

In their net in¯ow method, Wang and Wang [11]

proposed a ®nite element procedure to simulate incom-

pressible viscous ¯ow with a moving free surface. A layer

of air near the free surface was considered with the mo-

tion of liquid in a ®xed grid system. An arti®cial viscosity

is then employed to force the velocity of the air to follow

the liquid velocity on the free surface. Finally, the liquid

in each ®nite volume is calculated by directly integrating

the net in¯ow rate of liquid with respect to time. How-

ever, the free surface in the net in¯ow method cannot

advance over more than one grid mesh in a single time

step as in most existing methods. In addition, the liquid

front based on the net in¯ow method was found to have a

contact angle of about 90° on the wall. This does not seem

to be consistent with the experimental observation [12].

Recently, Wu et al. [13] applied the continuum sur-

face force method (CSF) on the dam-breaking problem.

The CSF method was introduced by Brackbill et al. [14]

and improved later by Jacqmin [15]. In this particular

numerical method, a color function similar to f in the

VOF method is smeared in a layer of ®nite thickness

instead of the original sharp step function. All the

Nomenclature

f volume fraction of liquid

g gravity, 9:806 msÿ2

H original height of water column [m]

h�x� dimensionless free surface pro®le

P ; P1 pressure and referenced pressure [N mÿ2]

p dimensionless pressure, �P ÿ P1�=�qlU
2
c �

Re Reynolds number, qlUcH=ll

t time [s]

�U ; V � velocity [msÿ1]

Uc characteristic velocity,
�������
gH
p

�u; v� dimensionless velocity, �U=Uc; V =Uc�
W original width of water column [m]

We Weber number, qlU
2
c H=c

wf�z� weighting function, z=�1ÿ exp�ÿz��
ŵf extended weighting function (18)

�X ; Y � coordinates [m]

�x; y� dimensionless coordinates, �X=H ; Y =H�
xf water front

z grid Peclet number (15)

Greek symbols

c coe�cient of surface tension [N mÿ1]

Dxi;Dyj grid meshes

Ds time step

j curvature of the free surface [mÿ1]

l viscosity [N s mÿ2]

l� dimensionless viscosity, l=ll

q density [kg mÿ3]

q� dimensionless density, q=ql

rnn normal stress on the free surface (19b)

s dimensionless time, �Uc=H�t
s0 previous time, sÿ Ds

Subscripts

0 quantity at time s0

a air

l liquid

w water
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physical properties such as the density and the viscosity

are then assumed to be linear functions of the color

function that vary smoothly across the arti®cial thick-

ness of a smeared free surface. Similar concept (smearing

the free surface) seems to play the leading role in the

recent development of numerical methods for free sur-

face ¯ow such as the indicator function [16] and the level

set function [17]. Unfortunately, very ®ne grids are

generally needed in the use of a smearing function (e.g.,

VOF, color function, indicator function and level set

function) due to the irregular shape of the moving free

surface. Otherwise, gradients of the smeared physical

quantities as well as the migration velocity of the free

surface cannot be properly handled as pointed out by

Haj-hariri et al. [18].

The purpose of the present study is to propose a new

numerical formulation for incompressible viscous free

surface ¯ow without smearing the free surface. The

sharp jumps of the physical properties across the free

surface will be handled by an extended weighting func-

tion scheme. A particular harmonic function is then

introduced to estimate the migration velocity of the free

surface. Through the use of the NAPPLE algorithm, a

force balance equation including surface tension is im-

posed on the free surface. Performances of the proposed

numerical procedure will be examined through three

well-documented dam-breaking examples.

2. Governing equations

Consider a two-dimensional liquid column of height

H and width W at the corner 06X 6W , 06 Y 6H . The

liquid column, initially at rest, collapses onto the hori-

zontal dry plane (Y � 0, X P 0) at t > 0. The liquid

spreads out and the height of the column falls. The ¯ow

is laminar and incompressible. All the physical proper-

ties are assumed to be constant for simplicity. After in-

troducing the dimensionless transformation

x � X=H ; y � Y =H ; u � U=Uc;

v � V =Uc; p � �P ÿ P1�=�qlU
2
c �;

s � �Uc=H�t; Re � qlUcH=ll; Uc �
�������
gH

p
;

q� � q=ql; l� � l=ll �1�
a single set of governing equations covering both the

liquid and the surrounding air can be written as

ou
ox
� ov

oy
� 0; �2�

q�
ou
os

�
� u

ou
ox
� v

ou
oy

�
� ÿ op

ox
� 1

Re
o
ox

l�
ou
ox

� ��
� o

oy
l�

ou
oy

� ��
; �3�

q�
ov
os

�
� u

ov
ox
� v

ov
oy

�
� ÿ op

oy
ÿ q� � 1

Re
o
ox

l�
ov
ox

� ��
� o

oy
l�

ov
oy

� ��
: �4�

Mathematically, the dimensionless density q� and vis-

cosity l� are step functions across the free surface. They

have the value of unity in the liquid region and jump to

another constant in the air region, i.e.

q� � 1 in liquid;

qa=ql in air;

�
�5�

l� � 1 in liquid;

la=ll in air;

�
�6�

where the subscripts a and l denote the properties of the

air and the liquid, respectively.

Conventionally, the free-slip condition is imposed on

all the solid boundaries x � 0 and y � 0 for free surface

problem [3,5,6,13]. This does not seem to be consistent

with the theory of viscous ¯ow. By contrast, the use of

the no-slip condition gives rise to a particular numerical

di�culty that the liquid front on the solid wall would

never advance. Due to the lack of a reliable dynamic

model for the contact angle at the liquid front, the

partial-slip condition

n
ou
oy
� �1ÿ n�u � 0; v � 0; �7a�

n �

xÿ xa

xf ÿ xa
for xa6 x6 xf ;

xÿ xb

xf ÿ xb
for xf 6 x6 xb;

0 otherwise

8>>>><>>>>: �7b�

on the horizontal plane y � 0 is employed in a local area

xa6 x6 xb covering the liquid front xf . Receding of the

liquid column on the vertical wall x � 0 is treated simi-

larly. The arti®cial boundary condition (7a) and (7b)

would be a good approximation as long as the charac-

teristic length of the problem is su�ciently large.

3. The extended weighting function scheme

Eqs. (2)±(4) and the appropriate boundary condition

(7a) and (7b) constitute a system of partial di�erential

equations. In the present study, the solution procedure is

performed on a regular (nonstaggered) Cartesian grid

system �xi; yj� with the simple notations

Dxi � xi�1 ÿ xi; Dxi � �Dxiÿ1 � Dxi�=2; �8a�

Dyj � yj�1 ÿ yj; Dyj � �Dyjÿ1 � Dyj�=2: �8b�
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For convenience, let the ®nite area Dxi � Dyj containing

the grid point P �xi; yj� be referred as ``®nite volume of

point P''. The four points adjacent to point P are de-

noted, respectively, by W �xiÿ1; yj�, E�xi�1; yj�, S�xi; yjÿ1�,
N�xi; yj�1�. Due to the ®nite size of the grid mesh, a ®nite

volume on the free surface would cover both regions of

liquid and air. Under such a situation, the density q�

appearing in the unsteady terms of Eqs. (3) and (4) and

the body force term in Eq. (4) should be evaluated from

q� � q� � f � �1ÿ f �qa=ql; �9�
where q� is the dimensionless average density and f is

the volume fraction of the liquid inside the ®nite volume.

Nevertheless, simply assigning q� � 1 and q� � qa=ql

when point P is in liquid and in air respectively, would

not show signi®cant error.

Next, applying the integration scheme [19] on Eq. (4)

for the grid point P �xi; yj�, one has

�aW �i; jviÿ1; j � �aE�i; jvi�1; j � �aS�i; jvi;jÿ1

� �aN �i; jvi;j�1 ÿ �aP �i; jvi; j � �aR�i; j � Re
op
oy
; �10�

�aW �i; j � Dxi

Z xi

xiÿ1

1

l�
exp

��
ÿ
Z xi

x

Req�u
l�

dx
�

dx
�ÿ1

;

�11a�

�aE�i; j � Dxi

Z xi�1

xi

1

l�
exp

Z x

xi

Req�u
l�

dx
� �

dx
� �ÿ1

;

�11b�

�aS�i; j � Dyj

Z yj

yjÿ1

1

l�
exp

� 
ÿ
Z yj

y

Req�v
l�

dy
�

dy

!ÿ1

;

�11c�

�aN �i; j � Dyj

Z yj�1

yj

1

l�
exp

Z y

yj

Req�v
l�

dy

 !
dy

 !ÿ1

;

�11d�

�aP �i; j � �aW �i; j � �aE�i; j � �aS�i; j � �aN �i; j
� Re q�=Ds; �12�

�aR�i; j � Req��1ÿ v0=Ds�; �13�

where v0 is the velocity at the previous time step

(s0 � sÿ Ds). If both q� and l� are continuous in the

interval xi6 x6 xi�1 on y � yj, then the weighting factors

�aE�i; j and �aW �i�1; j reduce to the standard weighting

function scheme [20]

�aE�i; j �
l�wf�ÿz�
DxiDxi

; �aW �i�1; j �
l�wf�z�
DxiDxi�1

; �14�

wf�z� � z
1ÿ exp�ÿz� ;

z � Re u�q�=l��Dxi; u � 1

Dxi

Z xi�1

xi

u dx; �15�

where the function wf�z� is known as the weighting

function [20] while z is the grid Peclet number in the

interval xi6 x6 xi�1.

In case the free surface intersects the interval

xi6 x6 xi�1 at x � xs, one should integrate Eqs. (11a)±

(11d) piece by piece over the two subintervals xi6 x6 xs

and xs6 x6 xi�1 as demonstrated in [19, Eqs. (15a) and

(16)]. Once this is done, the weighting factors in the in-

terval xi6 x6 xi�1 are expressible as:

�aE�i; j � ŵf�ÿz1;ÿz2 j �q��1; �q��2; �l��1; �l��2�=�DxiDxi�;
�16a�

�aW �i�1; j � ŵf�z2; z1 j �q��2; �q��1; �l��2; �l��1�=�DxiDxi�1�;
�16b�

where

z1 � Re�u�1�q�=l��1Ds1; �17a�

z2 � Re�u�2�q�=l��2Ds2; �17b�

ŵf�a;b ja1; a2; b1; b2�

� a2b1a� a1b2b
a2�1ÿ exp�ÿa�� � a1�1ÿ exp�ÿb�� exp�ÿa� :

�18�

In Eqs. (16a), (16b), (17a) and (17b), the subscripts 1 and

2 represent, respectively, the subintervals xi6 x6 xs

and xs6 x6 xi�1, while Ds1 � xs ÿ xi and Ds2 � xi�1 ÿ xs.

Due to the no-slip condition on the free surface,

letting �u�2=�u�1 � 1 would make a good approxima-

tion for the scheme, although the velocity gradient

could be discontinuous across the free surface. For

simplicity, the parameter �u�2=�u�1 has been removed

from the ŵf function (18). With this same procedure,

the other weighting factors in Eqs. (11c) and (11d)

can be written in a form similar to Eqs. (16a) and

(16b).

It is noteworthy that the weighting factors (16a)

and (16b) will become the standard weighting function

scheme (14) if one assigns either �Ds1;Ds2� � �Dxi; 0�
or �q��1 � �q��2, �l��1 � �l��2, u1 � u2 � u, z1 � z2 � z
for an interval without free surface. Hence, the pre-

sent scheme (16a) and (16b) is called ``extended

weighting function scheme''. In the present formula-

tion, the ``free surface'' turns out to be an internal

boundary of the physical domain, and thus no addi-

tional treatment is needed for the shear stress on the

free surface.
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4. Numerical procedure

It is interesting to note that both liquid and air could

be incompressible even though their densities are sig-

ni®cantly di�erent. Thus, the law of ``volume conserva-

tion'' (Eq. (2)) is valid for the entire computational

domain including the free surface itself and both regions

of liquid and air. This implies the applicability of the

NAPPLE algorithm [21] on a nonstaggered grids cov-

ering the entire ¯ow con®guration under study. In the

present computations, velocity and pressure �u; v; p�
under a given free surface is solved by using the extended

weighting function scheme along with the NAPPLE al-

gorithm and the strongly implicit solver [22]. Through

the use of the NAPPLE algorithm, the pressure pl as

depicted in Fig. 1 is imposed on the liquid-side of the

free surface when the pressure-linked equation is solved.

In this connection, e�ect of surface tension can be taken

into account by considering the force balance equation

on the free surface [23,24]

pl � pa � jH
We
� 1

Re
�rnn�l
�

ÿ la

ll

� �
�rnn�a

�
; �19a�

We � qlU
2
c H
c
� qlgH 2

c
; rnn � 2

ovn

on
; �19b�

where c, j and We are the coe�cient of surface tension,

the curvature of a convex free surface pro®le, and the

Weber number, respectively. The notations �rnn�l and

�rnn�a denote, respectively, the dimensionless normal

stresses on liquid-side and air-side of the free surface,

while ovn=on represents the dimensionless normal strain

rate on the free surface. Determination of the air-side

pressure pa will be discussed later.

Generally speaking, after the solution �u; v; p� con-

verges, the velocity on the free surface cannot be pre-

cisely interpolated from the velocity solution at the grid

points due to the discontinuity of the velocity gradient

across the free surface. To resolve this problem, a par-

ticular numerical technique is proposed. Fig. 2 shows a

schematic free surface in a computational domain with a

®xed and nonstaggered Cartesian grid system. The grid

points (the white nodes) adjacent to the free surface on

the liquid side separate the computational domain into

two regions. One of the two regions contains only liquid,

while the other (the gray region) includes the whole air

region, the free surface and a narrow liquid layer be-

tween the white nodes and the free surface. Let the

Laplace equations

o2u�

ox2
� o2u�

oy2
� 0;

o2v�

ox2
� o2v�

oy2
� 0 �20�

be solved in the gray region with known velocities at the

white nodes. The resulting harmonic functions u��x; y�
and v��x; y�, for convenience, will be referred as ``ex-

trapolated velocity from the liquid region''. The migra-

tion velocity of the free surface is then interpolated from

the ``extrapolated velocity''. Undoubtedly, the extrapo-

lated velocity could produce a smoothly varying velocity

on the free surface. It is noted that the Laplace Eqs. (20)

are used only to extrapolate the liquid velocity in a

narrow region covering the free surface. In¯uence of

Fig. 1. Free surface pressures pl and pa on a ®xed and non-

staggered Cartesian grid system.

Fig. 2. The domain (gray region) where the extrapolated

velocity �u�; v�� is de®ned.
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other boundary conditions is not signi®cant. Hence,

when Eq. (20) is solved, zero velocity �u�; v�� � �0; 0� is

assumed on all the computational boundaries except for

the white nodes (see Fig. 2), and ou��x; 0�=oy � 0 and

ov��0; y�=ox � 0 for simplicity.

Once the migration velocity of the free surface is

determined, the position of the free surface for the next

time step can be estimated by tracing the marker strings

[25] on the free surface. To achieve a good accuracy,

spacing of the markers is maintained essentially in the

order of (Dx=10). However, each marker could receive

an individual random error due to the explicit marker

tracing. This implies the existence of high frequency

numerical errors in the estimated free surface h�x� that

could lead to unstable surface tension results. In the

present study, the ®lter

hk � 1

5

Xk�2

m�kÿ2

hm; xk � 1

5

Xk�2

m�kÿ2

xm �21�

is used to ®lter out the high frequency error, where

�xm; hm� denotes the coordinate of the mth marker before

being ®ltered. The scale of the ®lter (21) is only one-half

of a grid mesh �Dx=2� and thus does not in¯uence the

resolution of the numerical solution. This same nu-

merical technique can be implemented in three-dimen-

sional ¯ows if an unstructured triangle element system

[16] is employed for the de®nition of the free surface

pro®le.

For convenience, the present numerical procedure is

summarized as follows.

1. Given the pro®le of the free surface h0�x� and velocity

�u0; v0� at the previous time level s0.

2. Based on �u0; v0; h0�, solve Eq. (20) in the gray region

with the known velocities at the white nodes (see

Fig. 2) to yield an extrapolated velocity from the

liquid region.

3. Use the extrapolated velocity to interpolate the mi-

gration velocity of the free surface.

4. Determine the position of the free surface h�x� with

Eq. (21) for the present time level s � s0 � Ds.

5. Replace the air velocity �u0; v0� with the extrapolated

velocity in the narrow layer where the advancing free

surface sweeps through during the period from s0 to

s0 � Ds.

6. Based on the free surface h�x� from step 4 and the

modi®ed velocity �u0; v0� from step 5, solve the gov-

erning equations (2)±(4) to obtain the solution

�u; v; p� for the present time level s.

7. Stop the computations if the prescribed time limit has

been reached. Otherwise, set s0 � s and �u0; v0; h0� �
�u; v; h�, then return to step 2 and repeat the compu-

tations.

The solution procedure for the governing equations (2)±

(4) mentioned in step 6 is expressible as the following

numerical loop.

(a) Guess a solution �u; v; p� for the present time level s.

(b) Estimate the air pressure pa on the liquid±air inter-

face from the guessed pressure in the air region with a

procedure similar to that described in steps 2 and 3 for

the interface velocity. In this connection, zero normal

pressure-gradient is assumed on the boundaries x � 0

and y � 0.

(c) Evaluate pl from Eqs. (19a) and (19b) for the inter-

face pressure on the liquid side.

(d) Solve the momentum equations (3) and (4) with the

extended weighting function scheme 10, (11a)±(11d),

(12), (13) for �u; v�.
(e) Solve Eq. (20) in the gray region with the known

velocities at the white nodes (see Fig. 2) to yield an ex-

trapolated velocity from the liquid region.

(f) Use the extrapolated velocity to interpolate the mi-

gration velocity of the free surface.

(g) Use the weighting function scheme [20] and the free

surface velocity obtained in step (f) to ®lter out the ve-

locity noises in the air region near the free surface.

(h) Use the NAPPLE algorithm to determine the pres-

sure ®eld for both liquid and air. In the meanwhile, the

pressure pl from step (c) and the free surface velocity

from step (f) are imposed, respectively, on the liquid-side

and the air-side of the free surface.

(i) Update the solution �u; v; p� with an SOR factor, and

return to step (b) until the solution converges to a pre-

scribed tolerance.

5. Results and discussion

Three cases of the dam-breaking problem are con-

ducted in this section to examine the performance of the

present numerical procedure. Water and air are adopted

as the media of the ¯ow. Their density and viscosity at

25°C are

qw � 998 kg=m3; lw � 0:99� 10ÿ3 kg=m s; �22a�

qa � 1:205 kg=m3; la � 1:81� 10ÿ5 kg=m s; �22b�

qa=qw � 0:001207; la=lw � 0:01828; �22c�

c � 0:0720 N=m �22d�

while the gravity is g � 9:806 m=s2. The dimensions of

the water column �H ;W � of the three cases are �2:25 in;
2:25 in�, �4:50 in; 2:25 in�, and �4:50 in; 1:125 in� that

correspond to Reynolds numbers of 43,129, 121,986 and

121,986, and Weber numbers of 4:439� 106, 17:76 �
106, and 17:76� 106, respectively.

In most applications of free surface ¯ow such as the

dam-breaking problem under study, the free surface

might sweep through a great part of the computational

domain at all possible inclinations. Under such a situa-
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tion, ®ne grid meshes are needed not only in the wall

region but also in the entire ¯ow ®eld. Thus, the use of a

square uniform Cartesian grid system

Dxi � Dx � Dyj � Dy �23�
is suggested for simplicity of computation. In the present

study, the partial-slip condition (7a) and (7b) is em-

ployed in the region xiÿ26 x6 xi�3 provided that the

liquid front is in the interval xi < xf < xi�1. The receding

water front on the vertical wall is de®ned similarly. The

uniform time step Ds � 0:025 is found adequate for all

the three cases.

In the case of �H ;W � � �2:25 in; 2:25 in�, three grid

meshes, namely, 61� 31, 81� 41 and 101� 51 grid

points, are employed on the domain of 06 x6 4 and

06 y6 2. This implies the grid sizes of Dx � Dy �
0:0667; 0:05 and 0.04, respectively. The resulting solu-

tions of pressure and velocity based on Dx � Dy � 0:05

Fig. 3. (a) Isobars with increment of Dp � 0:05. (b) Velocity vectors at various times for the case �H ;W � � �2:25 in; 2:25 in�.
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are presented, respectively, in Fig. 3(a) and (b) for

s � 0:5; 1:0; 1:5; 2:0 and 2:5. The increment of the iso-

bars employed in Fig. 3(a) is Dp � 0:05. In¯uence of grid

mesh will be discussed later. As observable from

Fig. 3(a), the pressure is essentially zero in the air region.

This can be attributed to the negligible density and vis-

cosity of the air as compared to the water. It is inter-

esting to note from Fig. 3(b) that the continuity

equation (2) induces a vortex in a layer of air adjacent to

the free surface. This ®nding is consistent with the

physical reasoning.

In their experiment, Martin and Moyce [12] con-

strained the water column with a thin waxed paper di-

aphragm. A 36 V bank of car batteries was shorted

momentarily to free the waxed paper and thus allowed

the ¯ow to begin. The times were recorded when the

liquid front reached some ®xed locations after the cur-

rent was applied. Unfortunately, in view of the very

heavy currents drawn from the batteries and the nature

of the diaphragm construction Martin and Moyce [12]

found it was impossible to record the exact ``beginning

time'' of the ¯ow motion after the current application.

Furthermore, such a time lag varied from one run to

another in the experiment. To circumvent this di�culty,

Martin and Moyce [12] normalized their experimental

data by setting xf �0:8� � 1:44 for all the 12 runs per-

formed for the case �H ;W � � �2:25 in; 2:25 in�, i.e. set-

ting s � 0:80 when the liquid front reached the

particular location x � 1:44. The normalized data of the

12 runs as well as their mean value can be found in [12,

Table 1]. Three photographs after current application

also were provided in [12] with unknown times when the

shots were taken.

Fig. 4 shows the resulting water front xf �s� of the

present study on various grid meshes �Dx � Dy �
0:04; 0:05; 0:067� for the case of a square water column

H � W � 2:25 in. The available experimental data [12]

and the existing numerical results such as the standard

MAC method [5], the net in¯ow method [11], the CSF

method [13] and the modi®ed MAC method [6] are

plotted also in Fig. 4. As mentioned in the previous

paragraph, the experimental data of Martin and Moyce

[12] has been normalized with xf �0:8� � 1:44. Thus,

comparison with the experimental data on the front

speed (slope of the xf �s� curve) would be more practical

than that on the water front itself xf �s�.
From Fig. 4, it is found that the grid mesh of

Dx � Dy � 0:05 is adequate for the present case. Fig. 4

reveals also that the front speed of the present prediction

is slightly faster than the measurement [12] at the be-

ginning of the ¯ow. Nevertheless, a good agreement

between them can be observed for s > 1:2. The MAC

method [5,6] seems to overpredict the advancement of

the water front for the present case. By contrast, the

result based on the net in¯ow method [11] agrees with

the present study very well. However, the net in¯ow

method is seen to produce an oscillating curve for the

water front xf �s�. The CSF method [13] gives rise to a

faster front speed up to s � 0:4 and thereafter a slower

front speed as compared to the present result.

Fig. 4. Comparison of the water front xf �s� among the present

result and experimental data and existing numerical results for

the case �H ;W � � �2:25 in; 2:25 in�.

Fig. 5. Comparison of free surface pro®les h�x� at s � 1:0 and

s � 1:5 between the present result and the experimental data

and each of the existing numerical results for the case

�H ;W � � �2:25 in; 2:25 in�.
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Fig. 5 shows a comparison on the free surface pro®le

h�x� at the two times s � 1:0 and s � 1:5 between the

present result and each of the existing numerical solu-

tions based on the MAC method [5], the net in¯ow

method [11] and the CSF method [13]. Experimental

data traced from two of the photographs provided by

Martin and Moyce [12] are plotted in Fig. 5 also as a

reference. The actual shooting times when the two shots

were taken, however, are not known. Nevertheless, they

are estimated to be s � 1:14 and s � 1:45 from the

normalized water front measurement xf �s�.
It should be noted here that a jump in the free surface

pro®le at x � 1 is clearly observed from the photograph

[12]. It seems to arise from the remains of the broken

diaphragm after current application. This might account

for the delay of the water front xf at the beginning of the

dam-breaking ¯ow as shown in Fig. 4. Satisfactory

agreements between the present result and the existing

numerical solutions [5,11,13] on the free surface pro®le

are observable. However, the net in¯ow method [11]

poses a vertical water front that seems to be physically

unrealistic.

In the second case of �H ;W � � �4:5 in; 2:25 in�,
101� 41 points are employed on the computational

domain of 06 x6 10=3 and 06 y6 4=3. The corre-

sponding grid size is Dx � Dy � 1=30. The resulting

isobars (with the increment Dp � 0:05) and the velocity

based on the present numerical procedure are depicted in

Fig. 6. Their counterparts in the third case �H ;W � �
�4:5 in; 1:125 in� with the same increment Dp � 0:05 are

provided in Fig. 7. Note that the numerical procedure for

the third case is performed on the computational domain

of 06 x6 2:5 and 06 y6 1:25 with a Cartesian grid

system of 101� 51 grid points (Dx � Dy � 0:025). The

characteristics of the numerical results of the latter two

cases are found to be similar to that of the ®rst one.

Fig. 6. Isobars with increment of Dp � 0:05 and velocity vectors at various times for the case �H ;W � � �4:5 in; 2:25 in�.
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Finally, comparisons of water front results among

the present prediction and the available experiment [12]

and the numerical predictions by the VOF method [9]

and the modi®ed MAC method [6] are shown in Fig. 8

for the second case �H ;W � � �4:5 in; 2:25 in�. For con-

venience, a comparison between the predicted water

front from the present study and that from the

measurement [12] for the third case �H ;W � � �4:5 in;
1:125 in� is presented also in Fig. 8. Note that the ex-

perimental data have been normalized with xf �0:595� �
0:72 for the second case and xf �0:5� � 0:36 for the third

one, while both cases have the same Reynolds number

Re � 121; 986. Again, satisfactory agreements on the

front speed are found to exist between the experimental

data [12] and the present prediction for both cases. The

VOF method by Hirt and Nichols [9] seems to over-

predict the water front, while the modi®ed MAC method

[6] predicts a slower water front as compared to the

present prediction.

6. Conclusion

A single set of governing equations covering both

liquid and air is derived for viscous incompressible free

surface ¯ow without smearing the free surface. The

momentum equations are solved with an extended

weighting function scheme on a ®xed and nonstaggered

Cartesian grid system. The NAPPLE algorithm is then

applied for the pressure solution. Through the use of the

NAPPLE algorithm, e�ect of the surface tension is im-

posed on the free surface. Such a numerical technique

has shown good performance in handling the disconti-

nuities of the physical properties across the free surface.

To achieve an accurate free surface pro®le for the next

time step, a harmonic function is proposed to extrapo-

late the migration velocity for the free surface from the

grid points adjacent to the free surface on the liquid side.

From the three cases of dam-breaking problem, the

present numerical method is seen to predict a water

Fig. 7. Isobars with increment of Dp � 0:05 and velocity vectors at various times for the case �H ;W � � �4:5 in; 1:125 in�.
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front that satisfactorily agrees with the well-known ex-

perimental data. Furthermore, an induced vortex in a

layer of air adjacent to the free surface is obtained. In

the present formulation, the ``free surface'' is treated as

an internal boundary, and thus no additional treatment

is needed for the shear stresses on the free surface.

Formulation of the present numerical method is quite

simple. It can be easily extended to three-dimensional

viscous free surface ¯ow, even inside a cavity of arbi-

trary shape.
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